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Unmodified fluorescein as a fluorescent chemosensor
for fluoride ion detection
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Abstract—Unmodified fluorescein (1) behaves as a fluorescent chemosensor for F� detection, where the F�-induced fluorescence
enhancement is driven by a transfer of the phenolic OH protons to F�.
� 2007 Elsevier Ltd. All rights reserved.
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The recognition and sensing of anions have attracted a
great deal of attention because of biological and
environmental importance of anions.1 Fluoride ion
(F�) is one of the most important anions due to its
pivotal roles in dental care and the treatment of osteo-
porosis.2 Design of fluorescent probe for F� detection
has therefore attracted much attention due to high
sensitivity and simplicity of the fluorescence analysis.3

Fluorescein is a dye used extensively as bio-labeling
reagents and fluorescent probes due to its excellent
photophysical properties, such as long-wavelength
absorption and emission, high fluorescence quantum
yield, and high stability against light.4 Considerable
effort has been devoted to the development of fluores-
cent probes for reactive oxygen species (ROS)5 and
metal cations6 based on the fluorescein platform. There
are, however, only three reports of fluorescein-based
fluorescent anion sensor.7 Yoon et al.7a synthesized a
fluorescein derivative conjugated with boronic acid
and aminomethyl groups. This material shows a F�-
induced emission enhancement due to a suppression of
the photoinduced electron transfer from the amine
nitrogen to the photoexcited fluorescein moiety by a
cooperative coordination of F� with the ligand groups.
Yang et al.7b synthesized a fluorescein derivative whose
two phenolic OH are protected by tert-butyldimethylsi-
lyl (TBS) groups. This shows a F�-induced fluorescence
enhancement due to the deprotection of TBS, leading to
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a formation of the spirocycle-opened ‘emissive’ fluores-
cein species. Very recently, a fluorescein bearing a thio-
urea group was synthesized by Kim et al.,7c which shows
an anion-induced fluorescence enhancement. In that,
hydrogen-bonding interaction between anion and thio-
urea group leads to a spirocycle opening of the fluores-
cein moiety, resulting in fluorescence enhancement.
Needless to say, practical anion sensing requires inex-
pensive and easily preparable sensors;8 however, all of
these fluorescein-based anion sensors require a synthesis
step for sensor preparation.7

Here we report that a commercially-available ‘unmodi-
fied’ fluorescein (1, Fig. 1) behaves as a fluorescent
chemosensor for F� detection, enabling selective F�

sensing among the halide anions. We describe here that
the strong fluorescence enhancement of 1 by F� is sim-
ply triggered by a transfer of the phenolic OH protons to
F�, leading to a formation of the spirocycle-opened
emissive anionic species.

As shown in Figure 2, 1 (1 lM) dissolved in acetonitrile
(MeCN) is nonfluorescent. Addition of 10 equiv of F�

(as a n-Bu4N+ salt) to the solution, however, leads to
OO OHOHO OH

 1 2
OO OMe

3

Figure 1. Structures of fluorescein (1) and its derivatives (2, 3).
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Figure 2. Fluorescence spectra of 1 (1 lM) in MeCN measured with
10 equiv of respective anions as n-Bu4N+ salt (kex = 480 nm). (Inset)
change in fluorescence color.
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Figure 4. Absorption spectra of 1 (10 lM) measured in MeCN with
4 equiv of respective anions. (Inset) Color change.
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an appearance of a strong green fluorescence at 500–
600 nm. Moderate and weak emission enhancement is
observed for AcO� and H2PO4

�, respectively, whereas
no enhancement is observed for other anions
ðCl�;Br�; I�; and HSO4

�Þ. As shown in Figure 3, fluo-
rescence titration with F� reveals that the fluorescence
enhancement is saturated upon the addition of 10 equiv
of F�, where the fluorescence quantum yield is 0.61.9

The emission enhancement is determined to be 2100-
fold, which is the highest value among the reported
fluorescein-based fluorescent F� sensors.7 In contrast,
addition of even 100 equiv of other halide anions (Cl�,
Br�, and I�) shows no emission enhancement (Fig. 3).
Notably, as shown in Figure S1,10 the fluorescence
response of 1 toward F� is unaffected by the presence
of other halide anions (Cl�, Br�, and I�), indicating that
1 is potentially available for selective F� detection
among the halide anions.

Figure 4 shows absorption spectra of 1 (10 lM) in
MeCN. Without anions, 1 is colorless and exhibits
almost no absorption at 400–550 nm, indicating that 1
exists as a spirocycle-closed form. This is confirmed by
a distinctive spiro-carbon shift at 83.51 ppm in the 13C
NMR spectrum of 1.11 Addition of F�, however, leads
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Figure 3. Fluorescence titration of 1 (1 lM) with F� (kex = 480 nm).
(Inset) Change in fluorescence intensity (kem = 532 nm).
to an appearance of a strong absorption (kmax =
514 nm), along with a clear color change of the solution
from colorless to yellow-green. Moderate and weak
absorption increase is observed for AcO� and
H2PO4

�, respectively, but almost no change is observed
for other anions ðCl�;Br�; I�; and HSO4

�Þ.

As shown in Figure 5, absorption titration of 1 with F�

reveals that addition of first 2 equiv of F� leads to an
increase in the entire absorption at 400–550 nm (see blue
line). Further addition of 2 equiv of F� (see red line)
leads to further increase in 465–550 nm absorbance,
but also leads to a decrease in 400–465 nm absorbance
with an isosbestic point at 465 nm. These findings imply
that two kinds of fluorescein species form in response to
the interaction between 1 and F� with 1:2 and 1:4 stoi-
chiometry. This is confirmed by the Job’s plots of 1 with
F�: as shown in Figure 6, 460 nm absorbance shows a
maximum at X (=[F�]/([F�] + [1])) = 0.66, whereas
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Figure 5. Absorption titration of 1 (10 lM) with F�. (Inset) Change in
absorbance monitored at 514 nm. The detailed absorption spectrum
change: see Figure S2.10
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Figure 6. Job’s plot for F� versus 1 in MeCN measured (closed circle)
at 514 nm and (open circle) at 460 nm. [F�] + [1] = 20 lM.
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514 nm absorbance shows a maximum at X = 0.8. The
respective absorption spectra of 1 obtained with 2 and
4 equiv of F� (Fig. 5) are similar to those of the mono-
anion and dianion species of 1 observed in water.12 As
reported,12a,13 1 is emissive in the anionic forms, espe-
cially in the dianion form. These findings suggest that,
as proposed in Scheme 1, two phenolic OH protons of
1 are removed via the interaction with F� in the ground
state, resulting in the formation of ‘emissive’ two anionic
species.

For further confirmation of the proposed F� sensing
mechanism of 1, 1H NMR titration of 1 was carried
out with F� in DMSO-d6 (Figure S310). Upon the addi-
tion of 0.2 equiv of F�, phenolic OH proton of 1
(10.09 ppm) shifts downfield (11.02 ppm) with a signifi-
cant intensity decrease. This indicates the occurrence
of a hydrogen-bonding interaction between the phenolic
OH protons of 1 and F�.14 Addition of 2 equiv of F�

leads to a complete disappearance of the OH proton.
In addition, all of the aromatic protons of 1 shift upfield.
This means that net electron density of the aromatic ring
of 1 increases,15 indicative of the removal of phenolic
OH proton from 1. The upfield shift of the aromatic
protons almost stops upon the addition of 4 equiv of
F�, meaning that the two phenolic OH protons of 1
are completely removed at this stage. This result is con-
sistent with the absorption titration and the Job’s plot
data (Figs. 5 and 6). In addition, upon the addition of
>4 equiv of F�, a new triplet signal appears at
16.1 ppm (J = 121 Hz), which is ascribed to a FHF�

dimer,1h,3d,g,16 meaning that the phenolic OH protons
of 1 are actually removed by F�. The removal of the
phenolic OH protons is also confirmed by ESI–MS anal-
ysis (Figure S410): the MS chart obtained with 1 and
5 equiv of F� in MeCN shows a strong peak at m/z
1056.8, which is ascribed to ([1�2H] + 3[n-Bu4N])+
O
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Scheme 1. Proposed F� sensing mechanism of 1.
ion, in which both phenolic OH protons of 1 are
removed. This means that anionic species of 1 are actu-
ally produced by the F�-induced proton removal. The
F� sensing mechanism of 1 can therefore be summarized
as Scheme 1: first 2 equiv of F� leads to removal of one
phenolic OH proton of 1 via a hydrogen-bonding inter-
action, resulting in a formation of a FHF� dimer and
the emissive monoanion of 1.15 Another phenolic OH
proton of the monoanion is removed continuously with
further addition of 2 equiv of F�, forming FHF� dimer
and the emissive dianion.

The proposed F� sensing mechanism of 1 (Scheme 1) is
further confirmed by absorption and fluorescence
behaviors of the control compounds, 2 and 3 (Fig. 1;
see Materials10). Compound 2 has a spirocycle-open
form by the esterification of the carboxylic acid group
of 1; therefore, even without anions, 2 exhibits an
absorption at 400–500 nm (Figure S510). This absorp-
tion spectrum is similar to that of 1 obtained with
<2 equiv of F� (Fig. 5), meaning that the removal of
the phenolic OH proton of 1 actually leads to the spiro-
cycle opening (Scheme 1). Upon the addition of F� to 2,
a new absorption appears at 524 nm, along with a de-
crease in 400–475 nm absorbance (isosbestic point:
475 nm), as is also the case for 1 with 2–4 equiv of F�.
This means that the phenolic OH proton of 2 is also
removed by F�. Job’s plot of 2 with F� (Figure S610)
shows a maximum absorption at X = 0.66, indicating
that the proton removal of 2 by F� occurs in a 1:2 stoi-
chiometry.17 These indicate that 2 equiv of F� leads to
removal of one phenolic OH proton; this fact supports
the proposed deprotonation mechanism of 1 (Scheme
1). Compound 2 is weakly fluorescent, but addition of
F� leads to a fluorescence enhancement (Figure
S710).18 This means that the removal of the phenolic
OH proton produces stronger emitting species; this also
supports the proposed mechanism (Scheme 1).

Compound 3 (Fig. 1) has a spirocycle-open form, where
both carboxylic acid and phenolic OH groups of 1 are
methylated. This compound does not show any absorp-
tion or fluorescence response to F� (Figure S1010). This
is because 3 does not produce anionic species due to the
lack of a phenolic OH proton. This finding again
support the proposed mechanism: the removal of the
phenolic OH proton of 1 by F� triggers the strong
fluorescence enhancement (Scheme 1).

In conclusion, we found that the unmodified ‘ready-
made’ fluorescein (1) behaves as a fluorescent F� sensor,
which shows potential for selective F� detection among
the halide anions. As is usually observed for the fluores-
cent anion sensors,3,7 the present fluorescein system has
difficulty in the application for aqueous samples.19 How-
ever, the fluorescein is photoexcited by visible light and
shows high fluorescence quantum yield and high sensi-
tivity; therefore, the fluorescein may be applicable as a
fluorescent F� sensor. The sensing mechanism clarified
here, which cleverly detects F� by simple proton transfer
processes, may contribute to the design of more effective
and more sensitive fluorescent anion sensor based on the
fluorescein platform.
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